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Enhanced power breathing soliton in communication systems with dispersion management
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A simple analytical description of the breathing pulse dynamics in optical transmission systems with dis-
persion management is presented. We demonstrate that a variational approach suggested in our previous works
is an effective way to describe all features of the dispersion-managed soliton observed in numerical simulations
and experiments. The developed method can be used for communication system design.
@S1063-651X~97!50311-4#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Dp
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Increasing demand for telecommunications servi
stimulates research in the field of high-bit-rate optical d
transmission. Research interest is directed mostly toward
main goals: development of long-haul optical amplifier s
tems with a transmission capacity of many tens of Gbit/s
the upgrade of existing fiber networks. Among other te
niques the dispersion management is proving to be an
cient and promising method to be used both in ultralo
transmission and for upgrading installed links at high
rates. This Rapid Communication discusses a useful and
fective analytical approach to describe optical pulse pro
gation in fiber lines with dispersion management. This pr
lem recently became a key topic in optical high-bit-ra
transmission research. The dispersion management is a
established technique for ‘‘linear’’ signal transmission. W
use here term linear transmission for the approaches in w
the detrimental effects of dispersion and nonlinearity do
balance each other as they do in the soliton transmiss
Three major factors limit linear transmission performance
an amplifier system: chromatic dispersion, nonlinearity, a
noise. Optimization of the system performance in the cas
the linear transmission requires minimization of the ch
matic dispersion of the line. The dispersion compensa
technique has been used successfully both in long-haul c
munication systems and in the existing terrestrial opti
links, most of which are based on standard telecommun
tion fiber with large dispersion in the second optical windo
~at 1.55mm). The basic optical-pulse equalizing system co
sists of a transmission fiber@standard monomode fibe
~SMF! or dispersion-shifted fiber# and equalizer fiber with
the opposite dispersion@e.g., dispersion compensating fib
~DCF!# @1#. In the linear regime, compensation of dispersi
aims to prevent dispersive broadening of the pulse. Disp
sion broadening of a signal in the transmission fiber is co
pensated by a pulse compression in the compensating fi
An additional advantage is that the impact of the four-wa
mixing on a signal transmission is suppressed due to
reduction of the efficiency of the phase matching. It has b
found recently that the dispersion management is also a
promising way to increase the transmission capacity o
soliton-based communication line@2–12#. Energy of the
dispersion-managed soliton is enhanced in comparison
561063-651X/97/56~5!/4951~4!/$10.00
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a fundamental soliton@soliton solution of the nonlinea
Schrödinger equation~NLSE!# corresponding to the sam
residual dispersion. This energy enhancement allows u
increase the signal-to-noise ratio with substantial impro
ment of system performance. The breathing soliton propa
ing in the link with dispersion compensation is chirped
contrast to the NLSE soliton. As a matter of fact, the brea
ing soliton presents a new type of a nonlinear carrier of
formation in optical fiber links. Being a stable solitary wav
that realizes a delicate balance between varying disper
and nonlinearity the dispersion-managed soliton both is
interest for the fundamental nonlinear science and is of g
practical importance.

In this Rapid Communication we demonstrate that
variational approach applied in@4,7# to the dispersion man
agement~see also recent works@8,10,13# and a nice paper
@9#! is an extremely effective tool that allows us to expla
all features of the dispersion-managed soliton observed
numerical simulations,@2–5# This approach provides a clea
physical picture of the pulse evolution in the transmiss
line under the combined action of the nonlinearity, varyi
dispersion, fiber loss, and periodic amplification. Develop
method can be used for optical communication system
sign.

Transmission of optical signal in fiber link with dispersio
compensation is governed by the following basic model:

iCz1d~z!C tt1
L

ZNL
uCu2C5 iG~z!C;

G~z!C5L„2g1r (
k51

N

d~z2zk!…C. ~1!

We use here the following normalization:z is normalized to
a dispersion map lengthL ~in km!; time is measured int0 ~in
picoseconds! that should be specified for each concrete pro
lem; an envelope of the electric fieldE5E(T,Z) is normal-
ized to the power P0: uEu25P0uCu2; ZNL51/
(sP0)—nonlinear length;s is the coefficient of the nonlin-
earity; g describes fiber losses,r is the amplification coeffi-
cient, zk are the amplifiers locations; normalized dispersi
R4951 © 1997 The American Physical Society
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d(z)52Lb2 /(2 t0
2); here b2 is the group velocity disper

sion varying periodically withz. The amplification period
can be different from the dispersion compensation per
Though the main results of this work will be formulated in
general form and can be used for arbitrary dispersion map
the illustrations without loss of generality we use symme
cal dispersion map for lossless system studied in@5#. As was
pointed out in@5# the inclusion of periodic amplification an
dispersion compensation can be handled as separate
lems, provided that amplification distance is substantia
different from the period of dispersion map. Equation~1! can
be written in the Lagrangian form

S5E Ldtdz

5E dtdzF i

2
~CCz* 2C* Cz!1d~z!uC tu22

c~z!

2
uCu4G ,

~2!

where c(z)5c0exp@2*0
zG(z8)dz8# with c05P0Ls. In this

short publication we focus on the discussion of the res
rather than on the derivation of the key equations. Usin
standard technique~see for details@14,4,7# and references
therein! it can be shown that the asymptotic breathing d
namics of the central part of an optical pulse propagating
the system with dispersion management is described in
leading order by the following trial function:

C~z,t !5
Q~x!

AT~z!
expS i

M ~z!

T~z!
t21 il~z! D , ~3!

herex5t/T(z) and evolution ofT(z) andM (z) is given by

dT

dz
54d~z!M , ~4!

dM

dz
5

d~z!C1

T3
2

c~z!C2

T2
; c~z!5c0expS 2E

0

z

G~z8!dz8D .

~5!

The constantsC1 andC2 are related to a structural functio
Q(x) through

C15

E uQx~x!u2dx

E x2uQ~x!u2dx

, C25

E uQ~x!u4dx

S 4E x2uQ~x!u2dxD . ~6!

Equations~4!,~5! should be solved for specific dispersio
and power maps with initial conditions corresponding to
input pulse. To keep at the beginning of each section pu
width normalized as above, we use the following initial co
ditions:T(0)51 andM (0)5M0. A pulse energy in the rea
world variables is given by

E5P0t0E uQ~x!u2dx. ~7!

For a specific choice of a structural functionQ one can find
the dependence of the soliton energy on the paramete
d.
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the system and input pulse. For instance, for input Gaus
pulseQ(x)5Aexp(20.5x2) it is easy to find thatC151 and
C25A2/(2A2). Energy of the asymptotic pulseE is propor-
tional to theC2 and is given in this case by

E5P0t02A2pC2 . ~8!

Pulse widthTFWHM ~full width at half maximum! is found as
TFWHM51.665t0. Below we discuss how the shape of
dispersion-managed soliton can be described using the v
tional approach.

Let us consider as an example a symmetrical dispers
map studied in@5#. A piece of a fiber with the dispersion
b2

(1).0 @dispersion shifted fiber~DSF!# and lengthZc is
followed by the compensating fiber with the dispersi
b2

(2),0 ~here SMF! and lengthL22Zc in the center and a
the end of the section it is placed symmetrically the sa
fiber as at the beginning. Considering SMF as the cen
fiber, we assume dispersion of the second piece to
D2'17 ps/(nm3km) at the operating wavelength 1.55mm.
Strength of the map can be changed by varying dispersio
the DSF pieces. Periodic solutions corresponding to this m
are plotted in Fig. 1. Recall that the normalized dispers
~indices are for different pieces of fiber! and the average
dispersion are

FIG. 1. Symmetrical dispersion mapd(z) and typical periodic
solutions T(z) and M (z) for this map @initial conditions are
T(0)51, M (0)50)#. Here map strengthK53, average dispersion
^d&50.2, C150.5.
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dk52
b2

~k!

2t0
2

L; ^d&52
^b2&L

2t0
2

. ~9!

Figure 2 displays the dependence of the parameterC2 ~and
consequently—the energy of an asymptotic pulse! on the pa-
rameter characterizing a variation of the dispersion~strength
of the map! K5@2Zcb2

(1)2(L22Zc)b1
(2)#/(2t0

2) and the re-
sidual dispersion̂ d&. As can be seen from Fig. 2~a! the
energy of the asymptotic pulse~that is proportional toC2)
increases with growth of the map strengthK. Figure 2~b!
shows that in this range of parameters asymptotic pulse
ergy linearly depends on the average dispersion. These
sults are in accordance with the empirical formula presen
in @5# and analytical approach developed in@6#. A new in-
teresting issue is that the strength of the considered ma
bounded from above by some critical~cutoff! value of K.
This is a feature of the specific structure of the map. F
instance, if we consider as a central fiber a piece of DSF w
d252d1 it is possible to find that there is no restriction
K. Mathematically, the occurrence of the criticalK corre-
sponds to the following. Using the considered map, we
fectively cross a region of existence of the periodic solutio
of Eqs. ~4! and ~5! in the plane (d2 ,K) along the line
d25const. This line intersects a right border line of the
gion of existence of the periodic solutions at someKcr . Cut-

FIG. 2. Dependence of the coefficientC2 that is proportional to
the soliton energy on the effective strength of the mapK ~a! and
average dispersion̂d& ~b!. One can see enhancement of the ene
with the increasing of the strength of the map. Here parameter
the map are:C150.5, ^d&50.2 in ~a! andK50.2 in ~b!.
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off parameterK decreases with the increasing of the resid
dispersion as shown in Fig. 3.

As it was first mentioned in@7# the variational approach
can be used also to determine the shape of the dispers
managed soliton. Consider a trial function~3! with periodic
functionsT andM satisfying Eqs.~4!,~5! for some constant
C1 andC2 . Averaging over one period inz we get again a
problem of the minimization of the functionalS. The breath-
ing soliton shape is found as a solution of the followin
equation:

2kQ1Qxx1
r 2

r 1
Q32ax2Q50; a5S C12C2

r 2

r 1
D .

~10!

Here k is a parameter of the soliton andr 1 ,r 2 ,C1 ,C2 are
constants related to a dispersion map. The procedure to
scribe a structure of the asymptotic breathing soliton co
sponding to a specific map is the following. First, we fin
periodic solutions of Eqs.~4!,~5! T and M for arbitraryC1.
Then, it should be calculated coefficientsr 15^d/T2& and
r 25^c/T&. The next step is to solve Eq.~10! for arbitraryk
andC1. For the dispersion compensating systems the par
etera depends on the characteristics of the dispersion m
pulse characteristics, and residual dispersion. In the li
a50 solution is a soliton of the NLSE. Our analysis of di
ferent dispersion maps show that the parametera in the sim-
plest versions of the compensating systems similar to
ones studied in@2,5,7# is always negative. Negativea corre-
sponds to the tunneling of the radiation from the central p
of the dispersion-managed soliton. An effective potential
Eq. ~10! is of the nontrapping type in this case. The typic
solution of Eq.~10! is shown in Fig. 4. Localized solution
of Eq. ~10! decay very slowly (uQu2→1/x as uxu→`). This
steady-state solution can approximate the central part of
asymptotic solution in the nonstationary problem for sm
a. In this case a slow tunneling of the radiation from t
main peak takes place due to nontrapping parabolic poten
To calculate energy of the main pulse and to define pu
width ~for a,0! it is necessary to introduce some cutoff
time around the central peak. It should be noted that Eq.~10!
has been derived in@11# by exact averaging of the maste
equation~1!. Also this equation~with a.0) describes the

y
of

FIG. 3. Cutoff value of the parameterK versus residual disper
sion; C150.5.
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shape of the quasisoliton in the system with programm
chirp and dispersion considered in@12#. It has been found in
@13# that using the additional grating at the end of the co
pensation cell allows us to operate in a regime witha.0 and
as a result to form a carrier pulse with Gaussian tails
should be pointed out that although the variational appro
describes with high accuracy the evolution of the central p
of the pulse this description is limited due to shedding a p
of the pulse energy into a dispersive wave during propa

FIG. 4. Typical solution of Eq.~10! for the symmetrical disper-
sion map shown in Fig. 1. For the parameters of the map show
Fig. 1 coefficienta520.1815 andr 2 /r 152.659.
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tion. This shedding of the energy into a dispersive pede
can be minimized by a proper choice of the input pulse
rameters using the above results. Note that in the consid
problem using the variational method is even more justifi
than, for instance, in the case of the NLSE. This is beca
an asymptotic breathing soliton has just the parabolic ph
~in time! at the central part like in the trial function~3! and
this is very different from the phase of a fundamental solit
The variational approach can be successfully used both
the description of the asymptotic state and the initial stage
input pulse evolution in the transmission systems with d
persion management@7–9,10,13#.

In conclusion, we demonstrate that a variational appro
is a very effective tool to describe breathing pulse dynam
in optical communication systems with dispersion mana
ment. This method presents a useful and effective analyt
approach to describe optical pulse propagation in fiber li
with dispersion management. Soliton transmission sys
design and optimization can be effectively managed us
this approach. Developed variational method allows us
calculate power enhancement for a dispersion-managed
ton. It is shown also that a shape of dispersion-mana
pulse is given by the NLS equation with additional parabo
potential of nontrapping type.
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