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Enhanced power breathing soliton in communication systems with dispersion management
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A simple analytical description of the breathing pulse dynamics in optical transmission systems with dis-
persion management is presented. We demonstrate that a variational approach suggested in our previous works
is an effective way to describe all features of the dispersion-managed soliton observed in numerical simulations
and experiments. The developed method can be wused for communication system design.
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Increasing demand for telecommunications services fundamental solitor{soliton solution of the nonlinear
stimulates research in the field of high-bit-rate optical dataSchralinger equation(NLSE)] corresponding to the same
transmission. Research interest is directed mostly toward twtesidual dispersion. This energy enhancement allows us to
main goals: development of long-haul optical amplifier sys-increase the signal-to-noise ratio with substantial improve-
tems with a transmission capacity of many tens of Ghit/s andnent of system performance. The breathing soliton propagat-
the upgrade of existing fiber networks. Among other teching in the link with dispersion compensation is chirped in
niques the dispersion management is proving to be an effcontrast to the NLSE soliton. As a matter of fact, the breath-
cient and promising method to be used both in ultralongnd soliton presents a new type of a nonlinear carrier of in-
transmission and for upgrading installed links at h|gh bitformation in Optical fiber links. Being a stable SO”tary wave
rates. This Rapid Communication discusses a useful and efbat realizes a delicate balance between varying dispersion
fective analytical approach to describe optical pulse propag@nd nonlinearity the dispersion-managed soliton both is of
gation in fiber lines with dispersion management. This probjntergst fqr the fundamental nonlinear science and is of great
lem recently became a key topic in optical high-bit-ratePractical importance.
transmission research. The dispersion management is a well- In this Rapid Communication we demonstrate that a
established technique for “linear” signal transmission. We Variational approach applied i@,7] to the dispersion man-
use here term linear transmission for the approaches in whichdement(see also recent works,10,13 and a nice paper
the detrimental effects of dispersion and nonlinearity do not9)) is an extremely effective tool that allows us to explain
balance each other as they do in the soliton transmissiorll features of the dispersion-managed soliton observed in
Three major factors limit linear transmission performance oftumerical simulationg,2—5| This approach provides a clear
an amplifier system: chromatic dispersion, nonlinearity, andPhysical picture of the pulse evolution in the transmission
noise. Optimization of the system performance in the case dine under the combined action of the nonlinearity, varying
the linear transmission requires minimization of the chro-dispersion, fiber loss, and periodic amplification. Developed
matic dispersion of the line. The dispersion compensatiorinethod can be used for optical communication system de-
technique has been used successfully both in long-haul con$!9n-
munication systems and in the existing terrestrial optical Transmission of optical signal in fiber link with dispersion
links, most of which are based on standard telecommunicacompensation is governed by the following basic model:
tion fiber with large dispersion in the second optical window
(at 1.55um). The basic optical-pulse equalizing system con-
sists of a transmission fibefstandard monomode fiber
(SMF) or dispersion-shifted fibérand equalizer fiber with
the opposite dispersiofe.g., dispersion compensating fiber N
(DCP] [1]. In the linear regime, compensation of dispersion G(2)¥=L(—y+r 2 8(z—z))V. )
aims to prevent dispersive broadening of the pulse. Disper- k=1
sion broadening of a signal in the transmission fiber is com-
pensated by a pulse compression in the compensating fibéNe use here the following normalizationis normalized to
An additional advantage is that the impact of the four-wavea dispersion map length (in km); time is measured ity (in
mixing on a signal transmission is suppressed due to thpicosecondsthat should be specified for each concrete prob-
reduction of the efficiency of the phase matching. It has beetem; an envelope of the electric fiell=E(T,Z) is normal-
found recently that the dispersion management is also a veiged to the power Py |E|?=Pg|W|%  Zy =1/
promising way to increase the transmission capacity of §o0Pg)—nonlinear lengthp is the coefficient of the nonlin-
soliton-based communication ling2—12. Energy of the earity; y describes fiber losses,is the amplification coeffi-
dispersion-managed soliton is enhanced in comparison withient, z, are the amplifiers locations; normalized dispersion

L
i, +d(2)Vy+ 5—|V|2T=iG(2)T;
ZNL
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d(z2)=—Lp,/(2t3); here B, is the group velocity disper- 16
sion varying periodically withz. The amplification period 1.4}

can be different from the dispersion compensation period. 1ol

Though the main results of this work will be formulated in a ]

general form and can be used for arbitrary dispersion map; in  ©
the illustrations without loss of generality we use symmetri- = 98¢
cal dispersion map for lossless system studigdb]nAs was 2 o6}
pointed out in[5] the inclusion of periodic amplification and ,:i 0.4l
dispersion compensation can be handled as separate prob- = | |
lems, provided that amplification distance is substantially '
different from the period of dispersion map. Equati@pcan O /
be written in the Lagrangian form 0.2 i
04957 02 03 04 05 06 07 08 09 1
S= f Ldtdz z
. 121 ' '
: * * 2 C(Z) 4
= | dtdz 5 (VPV} WV, +d(2)| ¥ P~ —- V|4, 1ol
2 i
61l

where c¢(z) =coexd 2[/§G(z')dZ] with co=PgLo. In this
short publication we focus on the discussion of the results
rather than on the derivation of the key equations. Using a
standard techniguésee for detail§14,4,7 and references
therein it can be shown that the asymptotic breathing dy- ol
namics of the central part of an optical pulse propagating in
the system with dispersion management is described in the

d(z)

'
N

leading order by the following trial function: 0 0.2 0.4 ] 0.6 0.8 1
W(zt)= Q(x) exd i M(Z)t2+i)\(z) 3) FIG. 1. Symmetrical dispersion mai{z) and typical periodic
' JT(2) T(2) ’ solutions T(z) and M(z) for this map [initial conditions are

T(0)=1,M(0)=0)]. Here map strengtk =3, average dispersion
herex=t/T(z) and evolution ofT(z) andM(z) is given by ~ (d)=0.2,C,=0.5.
d_T:4d(Z)M, (4) the system and input puls.e..For instanpe, for input Gaussian
dz pulseQ(x) =Aexp(—0.5¢%) it is easy to find thaC,;=1 and
C,=A%/(242). Energy of the asymptotic puléeis propor-
dM d(2)C; ¢(2)C, tional to theC, and is given in this case by

dz T3 T2

; c(z)=coexp(2sz(z’)dz’).
0
©)

The constant€,; andC, are related to a structural function
Q(x) through

E= Potoz\/ZWCZ. (8)

Pulse widthT gy (full width at half maximun) is found as

Tewnm=1.665,. Below we discuss how the shape of a
f |Qu(x)|?dx f |Q(x)|*dx dispersion-managed soliton can be described using the varia-
Ci= , Co= . (6) tional approach.
f x?1Q(x)[?dx (4f x2|Q(x)|2dx) Let us consider as an example a symmetrical dispersion
map studied in5]. A piece of a fiber with the dispersion

(1) i - i i i
Equations(4),(5) should be solved for specific dispersion f'32” >Od[dt|)sper:S|on shifted f'.be([?.‘:‘;':)] ang lingtg.ZC IS
and power maps with initial conditions corresponding to the',0Wed by the compensating fiber with the dispersion

2 .
input pulse. To keep at the beginning of each section puls§(2 '<0 (here SMPp and lengthL —2Z in the center and at
width normalized as above, we use the following initial con-the end of the section it is placed symmetrically the same

ditions: T(0)=1 andM(0)=M,. A pulse energy in the real fiber as at the beginning. Considering SMF as the central
world variables is given by fiber, we assume dispersion of the second piece to be

D,~17 ps/(nmxkm) at the operating wavelength 186
) Strength of the map can be changed by varying dispersion of
E= F’OtOJ |Q(¥)[“dx. (7)  the DSF pieces. Periodic solutions corresponding to this map
are plotted in Fig. 1. Recall that the normalized dispersion
For a specific choice of a structural functi@hone can find (indices are for different pieces of fibeand the average
the dependence of the soliton energy on the parameters dfspersion are
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09} (b) A FIG. 3. Cutoff value of the parametir versus residual disper-
08} | sion; C;=0.5.
0.7} ) . . .
off parameteK decreases with the increasing of the residual
| dispersion as shown in Fig. 3.
O 05¢ 1 As it was first mentioned if7] the variational approach
04} ] can be used also to determine the shape of the dispersion-
03l ] managed soliton. Consider a trial functi@®) with periodic
ozl functionsT andM satisfying Eqgs(4),(5) for some constant
' C, andC,. Averaging over one period in we get again a
0.1+ problem of the minimization of the functionsl The breath-
0y 02 07 08 o8 1 12 17 % is ing sqlitgn shape is found as a solution of the following
Residual dispersion < d > equation:
FIG. 2. Dependence of the coefficieB} that is proportional to KO+ 4 2 3 —0 a— _~ T2
the soliton energy on the effective strength of the nkaga) and KQF Qux rlQ ax’Q=0; a={C, Czr '
average dispersiofd) (b). One can see enhancement of the energy (10
with the increasing of the strength of the map. Here parameters of ) )
the map areC;=0.5,(d)=0.2 in (a) andK=0.2 in (b). Herek is a parameter of the soliton and,r,,C;,C, are

constants related to a dispersion map. The procedure to de-

®) (Bl scribe a structure of the asymptotic breathing soliton corre-
dy=— 72 . (dy=— P2 . (99  sponding to a specific map is the following. First, we find
2t3 2t3 periodic solutions of Eqs4),(5) T andM for arbitrary C;.

Then, it should be calculated coefficients=(d/T?) and
Figure 2 displays the dependence of the param@gefand  r,=(c/T). The next step is to solve ELO) for arbitraryk
consequently—the energy of an asymptotic putsethe pa-  andC,. For the dispersion compensating systems the param-
rameter characterizing a variation of the dispergigtirength  etera depends on the characteristics of the dispersion map,
of the map K=[2Z.8Y— (L—2Z.) B{?]/(2t3) and the re- pulse characteristics, and residual dispersion. In the limit
sidual dispersion/d). As can be seen from Fig.(® the a=0 solution is a soliton of the NLSE. Our analysis of dif-
energy of the asymptotic puldghat is proportional taC,) ferent dispersion maps show that the paramaterthe sim-
increases with growth of the map strendth Figure Zb)  plest versions of the compensating systems similar to the
shows that in this range of parameters asymptotic pulse erones studied ifi2,5,7] is always negative. Negati\e corre-
ergy linearly depends on the average dispersion. These reponds to the tunneling of the radiation from the central part
sults are in accordance with the empirical formula presentedf the dispersion-managed soliton. An effective potential in
in [5] and analytical approach developed[Bl. A new in-  Eq. (10) is of the nontrapping type in this case. The typical
teresting issue is that the strength of the considered map #olution of Eq.(10) is shown in Fig. 4. Localized solutions
bounded from above by some criticalutoff) value of K.  of Eq. (10) decay very slowly [Q|>— 1/x as|x|—=). This
This is a feature of the specific structure of the map. Foisteady-state solution can approximate the central part of the
instance, if we consider as a central fiber a piece of DSF wittasymptotic solution in the nonstationary problem for small
d,=—d, it is possible to find that there is no restriction in a. In this case a slow tunneling of the radiation from the
K. Mathematically, the occurrence of the critidal corre-  main peak takes place due to nontrapping parabolic potential.
sponds to the following. Using the considered map, we efTo calculate energy of the main pulse and to define pulse
fectively cross a region of existence of the periodic solutionswidth (for a<<0) it is necessary to introduce some cutoff in
of Egs. (4) and (5) in the plane {,,K) along the line time around the central peak. It should be noted that(Hg).
d,=const. This line intersects a right border line of the re-has been derived ifil1] by exact averaging of the master
gion of existence of the periodic solutions at soifie. Cut-  equation(1). Also this equation(with a>0) describes the
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0.4 . . . . . tion. This shedding of the energy into a dispersive pedestal
can be minimized by a proper choice of the input pulse pa-
0.35¢ rameters using the above results. Note that in the considered
0al problem using the variational method is even more justified
= than, for instance, in the case of the NLSE. This is because
§0~25 an asymptotic breathing soliton has just the parabolic phase
8 o2l (in time) at the central part like in the trial functiof3) and
2 this is very different from the phase of a fundamental soliton
& 0.15 The variational approach can be successfully used both for
01 the description of the asymptotic state and the initial stage of
input pulse evolution in the transmission systems with dis-
0.05| 1 persion managemeh?—9,10,13.
0 AA/\/\AA/\/\/\AAAA . /\/\/\A/\/\/\MMN\A In conclusion, we demonstrate that a variational approach
5 -10 -5 5 10 1

-1 0 5 is a very effective tool to describe breathing pulse dynamics

X in optical communication systems with dispersion manage-

FIG. 4. Typical solution of Eq(10) for the symmetrical disper- Ment. This method presents a useful and effective analytical
sion map shown in Fig. 1. For the parameters of the map shown i@Pproach to describe optical pulse propagation in fiber lines
Fig. 1 coefficienta= —0.1815 and,/r;=2.659. with dispersion management. Soliton transmission system
design and optimization can be effectively managed using
his approach. Developed variational method allows us to

shape o e quasioion n the system wih programmed B8 o manages s
P P ' ton. It is shown also that a shape of dispersion-managed

[13] th"?‘t using the additional grating at th‘? end .Of the Com'pulse is given by the NLS equation with additional parabolic
pensation cell allows us to operate in a regime withO and otential of nontrapping type

as a result to form a carrier pulse with Gaussian tails. ItD '
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of the pulse energy into a dispersive wave during propagaNo. 1/71 829 is acknowledged.
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